An Adaptive Shifted Power Method for Computing Generalized Tensor Eigenpairs

نویسندگان

  • Tamara G. Kolda
  • Jackson Mayo
چکیده

Several tensor eigenpair definitions have been put forth in the past decade, but these can all be unified under generalized tensor eigenpair framework, introduced by Chang, Pearson, and Zhang [J. Math. Anal. Appl., 350 (2009), pp. 416–422]. Given mth-order, n-dimensional realvalued symmetric tensors A and B, the goal is to find λ ∈ R and x ∈ Rn,x = 0 such that Axm−1 = λBxm−1. Different choices for B yield different versions of the tensor eigenvalue problem. We present our generalized eigenproblem adaptive power (GEAP) method for solving the problem, which is an extension of the shifted symmetric higher-order power method (SS-HOPM) for finding Z-eigenpairs. A major drawback of SS-HOPM is that its performance depended on choosing an appropriate shift, but our GEAP method also includes an adaptive method for choosing the shift automatically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shifted Power Method for Computing Tensor Eigenpairs

Abstract. Recent work on eigenvalues and eigenvectors for tensors of order m ≥ 3 has been motivated by applications in blind source separation, magnetic resonance imaging, molecular conformation, and more. In this paper, we consider methods for computing real symmetric-tensor eigenpairs of the form Axm−1 = λx subject to ‖x‖ = 1, which is closely related to optimal rank-1 approximation of a symm...

متن کامل

Computing Tensor Eigenvalues via Homotopy Methods

We introduce the concept of mode-k generalized eigenvalues and eigenvectors of a tensor and prove some properties of such eigenpairs. In particular, we derive an upper bound for the number of equivalence classes of generalized tensor eigenpairs using mixed volume. Based on this bound and the structures of tensor eigenvalue problems, we propose two homotopy continuation type algorithms to solve ...

متن کامل

Preconditioned Locally Harmonic Residual Method for Computing Interior Eigenpairs of Certain Classes of Hermitian Matrices

We propose a Preconditioned Locally Harmonic Residual (PLHR) method for computing several interior eigenpairs of a generalized Hermitian eigenvalue problem, without traditional spectral transformations, matrix factorizations, or inversions. PLHR is based on a short-term recurrence, easily extended to a block form, computing eigenpairs simultaneously. PLHR can take advantage of Hermitian positiv...

متن کامل

A linear homotopy method for computing generalized tensor eigenpairs

Let m,m′, n be positive integers such that m 6= m′. Let A be an mth order ndimensional tensor and B be an m′th order n-dimensional tensor. λ ∈ C is called a B-eigenvalue of A if Axm−1 = λBxm−1, Bxm = 1 for some x ∈ C\{0}. In this paper, we propose a linear homotopy method for solving this eigenproblem. We prove that the method finds all isolated B-eigenpairs. Moreover, it is easy to implement. ...

متن کامل

An Iterative Finite Element Method for Elliptic Eigenvalue Problems

We consider the task of resolving accurately the nth eigenpair of a generalized eigenproblem rooted in some elliptic partial differential equation (PDE), using an adaptive finite element method (FEM). Conventional adaptive FEM algorithms call a generalized eigensolver after each mesh refinement step. This is not practical in our situation since the generalized eigensolver needs to calculate n e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2014